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Abstract. The fluctuations of a train of steps on a vicinal surface at equilibrium and during 
evaporalion are studied in the framework of Burton. Cabrera and Frank‘s theory. Step 
fluctuations are trealed as perturbations of the sbaight step’s shape and within a linear analysis 
the step morphological stability is investigated in a general way. Previous results of Bales 
and Zangwill and of Uwaha and Saito are obtained as special cases when asymmeuy behveen 
kinetic Mefficients for adatom attachment at step edges (the ’Schwwbel effect’) is included A 
smng Schwwbel effect is known to lead to step bunching and to smoothing of an isolated step 
during evaporation. Here we show that a strong Schwwbel effect leads instead to roughening 
of steps in a M j n  at evaporation temperatures. Furlhermore, we show that the Schwwbel effect 
is negligible on vicinal surfaces with widely spaced steps at evaporation temperatures. For 
both reasons, we conclude, in contrast with Uwaha and Saito, that the observed phenomenon of 
kinetic step smoothing during silican evaporation cannot be justified by the presence of a smng 
Schwoebel effect The experimenw SiNation is discussed and a scenario is proposed that does 
not invoke a Strong Schwoebel effecr. 

1. Introduction 

The dynamics of steps on vicinal surfaces at and out of equilibrium is a subject of substantial 
current interest. from both the theoretical [l-91 and the experimental [10-14] point of view. 
Theoretical investigations of the out-of equilibrium case usually take as their starting point 
the seminal paper by Burton, Cabrera and Frank (BCF) 1151, extended so as to include 
the so-called ‘Schwoebel effect’ [16]. This refers to a by now well established [1&19] 
asymmetq in the attachment kinetics of adatoms at ascending versus descending steps. 
Generally speaking, an adatom trying to stick to a descending step has to climb an energy 
barrier higher than the simple diffusion barrier. Therefore, the probability of a sticking event 
will be reduced compared with that of an adatom approaching an ascending step. Such a 
barrier has many implications concerning the stability of a train of steps, since it is able to 
induce step bunching [7, 161. It is also important for the stability of the surface itself, since 
a flat high-symmetry face becomes unstable when a net up-step surface diffusion current is 
present [ZO, 211. However, the situation is not always as simple as that, since cooperative 
mechanisms may be devised [19] that favour the overcoming of the step barrier. 

The Schwoebel effect may be responsible for two kinds of instability: (i) step bunching 
in the direction perpendicular to the steps [16]; (ii) step meandering [3]. The former occurs 
at evaporation and the latter during growth. In the latter case the straight shape of steps 
becomes unstable because diffusing adatoms attach preferentially to a protruding part of 
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a non-straight step (as in diffusion-limited aggregation) and mostly from the lower terrace 
(due to the asymmetric kinetics); if a sufficiently high supersaturation is maintained on the 
terraces, a protrusion in a step is enhanced (see [3]), whence the instability. 

Uwaha and Saito [4] used this same concept of asymmeiric attachment kinetics to 
describe the stabilization of the step shape during sublimation of the crystal [ 121. In this 
case, because of detailed balance the Schwoebel effect mechanism implies that adatoms 
detach from a step more easily towards the lower terrace than to the upper one. If the 
adatom density on the terraces is sufficiently reduced by evaporations, step atoms have 
a stronger tendency to detach from protruding parts, which should lead to damping of 
fluctuations and smoothing of the step shape (figure 1). This simple argument, however, 
applies only to isolated steps, since it neglects correlations between neighbouring steps due 
to the diffusing adatoms. In any case, the phenomenon of step smoothing has been reported 
on vicinal (1 11) surfaces of silicon in the evaporation regime (see [I21 and the next section). 
It is this phenomenon that partly motivated our work. 

Y 

Fiyre 1. Step fluctuation damping during evaporation. in the presence of a strong Schwcebel 
effect. Atom detach preferentially from protruding meanders to the le" in front, and are not 
able to cross the step and attach IO the upper m a c e .  This simple scenario may be modified by 
step coupling through the diffusing adatom. 

The main ambition of the present work is to point out that no specific study of an 
evaporating vicinal surface has yet been made, and that some points are worth reconsidering. 
Bales and Zangwill [3] investigated the full problem of a step train, but only considered 
situations where all steps are fluctuating in phase. In the case of growth this 'in-phase' mode 
turns out to be the most unstable one. so the growth instability is correctly predicted in [3]. 
In the case of evaporation, however, the most unstable mode will be seen in section 3 to 
be the 'anti-phase' mode, when any pair of consecutive steps fluctuate in phase opposition. 
The explicit treatment of the step-step phase relation is therefore crucial. The analysis of 
Uwaha and Saito [4], which is limited to an isolated step, is thus not satisfactory. In the 
present article, the relaxation rate of step fluctuations is evaluated for any phase shift. 

The second important point that we want to stress is the magnitude of the Schwoebel 
effect. A very strong effect, which overdamps the fluctuations of an evaporating isolated 
step, as Uwaha and Saito showed 141, le& instead in a frain to a steppairing instability 
and enhances the fluctuations of steps, as we show in section 5.1. This contrasts with 
the observation 1121 of an evaporating train of steps: (i) the steps remain approximately 
equidistant; (ii) step fluctuations are damped. In this paper, following 131 we associate with 
the step-edge potential barrier a typical length, ds, which can be thought of as the mean 
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free path of an adatom before it descends the step. If this length is shorter than the interstep 
distance e, a diffusing adatom is more likely to descend the step than to cross the terrace 
back to the nearest ascending step. In this case, the Schwoebel barrier is negligible. This 
scenario is most likely to apply at the high temperatures where sublimation takes place and 
on the large terraces (% lo3 A) observed in the experiments [12]. 

The paper is structured as follows. In section 2 we discuss the experimental scenario 
that we are interested in. In section 3 the linear stability of a fluctuational perturbation on 
the shape of steps in an array with separation is addressed. In section 4 we check our 
formulae against known results for steps at equilibrium. The case of evaporation is discussed 
in section 5 ,  where we distinguish between an isolated step and a step train, and between 
strong and weak Schwoebel effects. A discussion of the observed step smoothing and of 
the possible importance of the Schwoebel effect at evaporation temperatures is proposed in 
section 6. We conclude with a summary in section 7. Two appendices containing details of 
calculations close the article. 

2. Step flow sublimation of vicinal surfaces: the experiments 

When surfaces that arc vicinal of a high-symmetry orientation are heated under ultra- 
high vacuum (UHV), a temperature region is reached where the steps fluctuate about fixed 
equilibrium positions. Such fluctuations on a silicon surface vicinal of orientation 11 11) 
have been studied by reflection electron microscopy (REM) [HI. During these experiments 
no atom is deposited, and adatom desorption is negligible, so steps can only exchange matter 
with surrounding surface regions. Due to the high temperature (900 "C), surface diffusion is 
fast enough to warrant equilibration of the step distribution. Statistical [ l l ]  and dynamical 
[l, 21 properties of the step fluctuations have been investigated in detail. 

On further increasing the temperature (> lo00 "C), the adatoms appreciably desorb, 
the step train starts to move towards the up-step duection in what is known as step flow 
motion, and the crystal sublimates [ 121. In the sublimation regime the surface undergoes 
a morphological transition, called 'macroscopic facetting' [lo, 141. The steps regroup in 
many close bands ('step bunching'), where they cannot be resolved by REM, separated by 
large terraces ('facets') several tens of microns in size. In these terraced regions there is 
a very weak density of non-bunched steps, with separations e ranging between 100 A and 
some microns. It is the fluctuations of these widely spaced steps that are studied, since step 
bunching is always produced during preparation of the sample (high-temperature cleaning) 
and persists down to lower temperatures due to very slow kinetics. Note that step bunching 
is strongly dependent on, and very likely due to, the electric current used to heat the sample 
[lo, U]. Actually, steps bunch only under DC conditions, and the temperature where 
this happens depends on the current direction with respect to the step-up and step-down 
orientation. Step bunching does not occur if Ac heating is employed [lo], but unfortunately 
the latter prevents REM observation. Also, spiral steps emerging at screw dislocations appear 
during sublimation; the spiral rotates regularly with a movement equivalent to step flow. 

Step flow and spiral sublimation take place as described by Burton, Cabrera and Frank's 
theory (see the following section). The observed step velocity is linear in the stepstep 
separation e.  According to theory, this implies that the typical length on which adatoms 
diffuse before desorption, xs,  is much larger than e at all temperatures investigated (up to 
1305 "C) [lo, 111. Surprisingly, during step flow motion the step fluctuations are strongly 
suppressed, the more so the higher the temperature and the evaporation rate, and at high 
enough temperatures (> 1750 "C) the steps look smooth on a typical length of 1 p m  within 
the experimental resolution (m 100-50 A). 
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There is no convincing explanation for step smoothing. Recently, Uwaha and Saito 
[4] discussed this kinetical step smoothing by explicitly taking into account the Schwoebel 
effect. Bales and Zangwill [3] have shown that the Schwoebel effect produces an instability 
of MullinsSekerka type of the step shape during step flow growth if the supersaturation is 
large enough compared with the step line stiffness, which has a stabilizing effect, fluctuations 
are strongly amplified and the straight shape becomes unstable. Uwaha and Saito [4] showed 
that during evaporation the straight shape of a step is always stable, and step fluctuations are 
decreased compared with the equilibrium case. However, they only considered an isolated 
step, and an unphysically large sticking asymmetry. We reconsider the whole area in the 
following. 

ak 

Figure 2 Microscopic rate parameters for adatom dynamics in Bunon, Cabrera and Frank? 
model of step motion. See the text for lhe definitions of the parameters, 

3. Burton, Cabrera and Frank's theory of step flow growth and evaporation 

The theory of Burton, Cabrera and Frank (BCF), originally devised for growth, can easily be 
adapted to the case of sublimation of a stepped surface. In this case one writes a diffusion 
equation for the adatom density c(x, y, t )  on a terrace delimited by two steps at distance e, 

ac C - = D s V c +  F - - 
at 5 

where D, is the adatom surface diffusion constant, F the atom deposition flux and l / r  is 
the desorption probability of an adatom per unit time and surface area (see figure 2 for 
a graphical definition of microscopic parameters). The important ingredients are now the 
boundary conditions at the steps. It is here that the asymmetry of the attachment-detachment 
kinetics plays its role. It is included by writing 

I+ D, (E) + = k+ [e  - c& + l k m  

where r = c$py, < is the equilibrium adatom concentration, y is the step stiffness, K, 

is the local step curvature and n is the local step normal. The coefficients k+ and k - ,  which 
refer to adatoms coming from the lower and upper terrace, respectively, determine the flux 
of adatoms onto the step. If k- (respectively, k+)  vanishes, no adatom sticks from the 
upper (respectively, lower) terrace. In conhast, k* = 00 means instantaneous attachment 
of all adatoms impinging from the respective terraces. The latter condition warrants local 
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equilibrium at the step since it implies [c - c& + FK,,,]+ = 0. At the high temperatures of 
interest here, it is quite natural to assume that each step is in equilibrium with the lower 
terrace, that is, k+ = CO. Very little is known on possible values fork-. and one of our 
goals is to learn something about it. The special choice of completely asymmetric boundary 
conditions (k- = 0. k+ = CO) leads to what is called the 'one-sided model' in the literature: 
each step is a perfect mirror for the adatoms coming from the upper terrace, and a perfect 
sink for those impinging from the lower side. We will investigate what happens if one 
departs from this extreme assumption by allowing the potential barrier at descending steps 
to be finite. 

If one assumes that diffusion is sufficiently fast, that is D,r > eZ/Q2, the time 
dependence in (1) can be ignored, and a quasi-static solution can be found. In fact, a weaker 
condition can be found to be sufficient. If U is the step velocity, the quasi-static solution 
is a good approximation to the m e  one when U is smaller than the typical adatom velocity m. For small terraces, u/n = tc&/r. Thus, U c m implies ( ~ Q C & ) ~  c D,r. 
The two conditions are essentially equivalent on Si(l11) at high temperature (> 850 "C), 
where cEq 14.1. They are well satisfied in this case at least up to 1300 "C. 

Bales and Zangwill [3] investigated in the framework of BCF theory the onset of 
the shape instability of steps at mutual distance t during step flow growth by atom 
deposition. If atoms are deposited at a rate F ,  either from the vapour or a beam, and 
an asymmetry in the attachment kinetics of adatoms at steps from the upper and fiom 
the lower side is included, then a fluctuation of sufficiently long wavelength will grow 
exponentially and the straight step configuration will become unstable. In order to evaluate 
the instability threshold quantitatively, the mth step is described as a function x,(y. t ) .  
The straight t = 0 configuration is thus x,(y. 0) = constant. At finite time one writes 
x,(y, f )  = x,(y. 0) + Sx,(y, I ) ,  where ax, is a small-amplitude perturbation. Choosing 
6x,(y, t )  = E cos(qy) exp(imq4 + at) + cc, one can compute the relaxation rate o(q, @) 
as a function of the phase shift @. The latter describes the phase relation of neighbouring 
steps in the train. A positive w(q, @) for a given q4 and some q means that the perturbation 
relative to that particular wavelen,& will grow unstably. For instance, Bales and Zangwill 
computed w ( q ,  q4) assuming that all steps are fluctuating in phase, that is, for q4 = 0. As we 
show below, the in-phase mode is the most unstable one during growth, but it is not always 
so. We have therefore computed w(q,q4) for arbitrary phase shifts q4 between adjacent 
fluctuating steps, and then determined which one is the most unstable mode in the various 
cases. We only give here the result, deferring all the rather cumbersome computational 
details to appendix 1. One finds that in the case of an arbitrary phase shift w is a complex 
quantity, w = w,+ioi. As usual, the real part gives the relaxation rate, while the imaginary 
part gives the modulation of an oscillating contribution in time. As we show in appendix 
1, the imaginary part is proportional to sin@, so it vanishes for q4 = 0 or x .  In fact, we 
will only consider these two values, since we will only be concerned with the most unstable 
in-phase and anti-phase modes. 

Using Bales and Zangwill's notation (see (13) in their paper) we write 

where f which is given by 
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is always positive and expresses the stabilizing effect of the line stiffness. The term g(q, 4) 
explicity reads 

8(q9 4) = QAF(d- - d+)N(q, 4 ) l W )  (6) 
where we defined 

N ( q ,  4) = Aq(d+ + d-)[ cos 4 + Aqxs sinh (A,!) sinh ( ~ t )  

-cosh ( K ! )  cosh (A,t)] + q2xf[cosh ( ~ t )  - 11 sinh (A& (7) 

D ( q )  = [(d+ + d - ) c o s h ( ~ t )  + (Kd+d- +x,)s inh(~t)]  

x [(d, + L ) A ,  cosh (A,!) + (d+d-Ai + 1) sinh (A&)] . (8) 
Here C2 is the atomic area, AF = F - Fcs = F - 5/7. The lengths Cr, = D,/k+ are 
also introduced, which depend on the attachment coefficients k+ and k - ,  which refer to 
adatoms coming from the lower and upper terrace, respective1 The length xs = a is 
the surface diffusion length and K = l/xs. Finally, A, = &. 

3.1. On the role of the phase shifi 4 
Equation (4) displays separately the stabilizing effects (due to the step stiffness and to the 
step coupling through the diffusing adatoms), contained in f ,  and the destabilizing effect 
of the under- or supersaturation AF in the presence of a Schwoebel effect (d- - d+ > O), 
contained in g. The latter vanishes as expected for symmetric kinetics at steps (d- = d+) 
and at equilibrium (i.e. when F = Fcq). In the case of growth ( A F  > 0) it follows from 
(6) and (8) that g(q. 4). and therefore o(q ,  @), have, as functions of 4, their maximum at 
4 = 0 for any value of q. Therefore, the in-phase mode (4 = 0) has the smallest relaxation 
rate and is thus the most unstable. This leads to the growth instability studied by Bales and 
Zangwill [3]. However, in the case of evaporation ( A P  < 0) g(q,$)  and w ( q , @ )  have 
their maximum at 6 = R for any q.  Therefore the most unstable mode is in this case the 
anti-phase mode (4 = x ) .  

As a general rule, 4 = 0 gives the most unstable mode when AF(d- - d+) z 0, and 
4 = R does it when AF(d- - d+) c 0. 

Finally, a comment on the lengths &. They are large if the corresponding kinetic 
coefficients k* are small compared to D&, Q being the lattice spacing. In particular, a 
very small d- corresponds to a very low sticking coefficient from the upper terrace, and 
thus to a strong Schwoebel effect. Therefore d- is a candidate as the relevant characteristic 
length to be compared with t in order to judge of the importance of the Schwoebel effect. 
We will retum to this point later. 

4. Steps at equilibrium 

As a first application we will re-derive from BCF theory the results found in [2] for steps 
at equilibrium. In that paper the creation time 7(t) of a perturbation of wavelength L was 
computed with a quite phenomenological approach. More details can be found in appendix 
2. The time 7 ( L )  should be equal at equilibrium to the reciprocal of the relaxation rate 
U ( @ ,  q). equation (4), for q = 1/L, which allows the comparison. The derivation of OJ 

given here is of course more rigorous, but it poses some problems: what value of the phase 
difference 4 shall we choose? ?he most natural assumption is to consider any value as 
likely apriori as any other, and to average over 4 with a uniform disbibution over (0,2n). 
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Since in this case (cosq5) = 0, we can also choose as typical the value 4 = n/2. This 
allows us to find the same results as in [2]. 

Having in mind a crystal under ultra-high vacuum at temperatures where evaporation is 
still negligible, we take 5 + 03 (which implies K + 0 and A, -+ q) .  and no deposition 
flux (F = 0). Therefore g(q, 4) vanishes identically, j ( q .  4) has the interpretation of the 
equilibrium restoring force on a fluctuating step, and U&. 4) = -q2 j ( q ,  4) gives the 
reciprocal of the relaxation time of a step fluctuation of wavennmber q .  

We treat for simplicity only the case of instantaneous sticking of adatoms to an ascending 
step. In a discretized model this should imply d+ = a,  that is the smallest possible value 
for d+. In this continuum version we write instead d+ = 0 if the sticking is instantaneous. 
We thus let d+ = 0 in the following and write d- = ds (S for Schwoebel) for typographical 
convenience. We also let a = = 1 everywhere . In the absence of desorption and 
deposition equation (5) reads 

2[cosh (qe) -cos41 + qds sinh (qe )  
'(" ') = Dsrq qds cosh (4e) + sinh (q t )  

4.1. An isolated step at equilibrium 

Let us consider first the limit of an isolated step, e -+ 03. From formula (9) one finds 

Clearly, the result does not depend on 4 in this case. For both strong and weak 
Schwoebel effects we find in order of magnitude 

(11) 

which is consistent with (11) (see [2]). Note that the diffusion constant enters via the 
product D&,, in much the same way as the desorption rate only appears as the ratio CO /z 

q : It is in fact a general rule that the consideration of macroscopic (with respect to the atomic 
spacing) phenomena only allows one to measure such 'macroscopic' (since they involve the 
particle density) quantities. The diffusion length x, is a measure of the relative importance 
of the two mass transport terms, Dsc& and c&/r ,  since x," = (Dsc&)/(c&/?). 

3 oq(q, 4) = - ~ , r q ~  = - D , c & m  

4.2. A train ojsteps at equilibrium 

We consider now the case of a train of steps at mutual distance e. In this case, again 
neglecting deposition and evaporation, from equation (9) one immediately finds the leading 
term in q ,  

For 4 = 0 this term vanishes identically, and wq(q. 0) is proportional to q4 at small 
q .  We will shortly show that the q4-behaviour is characteristic of a very strong Schwoebel 
effect. 

We consider first the case of a small potential barrier at descending steps (compared 
with temperature); that is, the weak Schwoebel effect. 
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4.3. A train of steps: the weak Schwoebel effect 

In the weak Schwoebel effect ds is smaller than the average stepstep separation E. 
Neglecting ds in (12) and letting cos@ = 0, one finds that the relaxation time of a thermal 
fluctuation is proportional to e ,  as in formula (12) of [Z]. This dependence on .t of the 
relaxation time of (equilibrium) thermal fluctuation has also been observed on Si (1 11) 
at 900 "C [2]. At this temperature desorption is still negligible-the evaporation rate is 
approximately s-'. The sample was under ultra-high vacuum and no atoms were 
deposited. In this case equation (12) applies correctly. The physical implication is the 
following: a potential barrier is actually present at down steps, but if the terrace size t is 
large enough, that is, if >> ds, its effect is negligible. Thus, the crucial question we have 
to answer is: how strong could the Schwoebel effect reasonably be in the experimental 
situation? In [2] a relaxation time proportional to E is found for terraces as narrow as 300 
A. If we assume that ds is controlled by the barrier difference AWs through the activated 
form 

we are able to provide an upper bound to A W,. Letting ds ~3 t ~3 300 A at T = 1173 
K, we find AWs c 0.47 eV. The value seems very reasonable. Latyshev et al [IO] claim 
that according to their measurements 'the difference in the values of energetic barriers for 
adatoms incorporation into the step ranges from 0.2 to 0.6 eV' . Since we assumed one of 
the barriers to vanish, this agrees with our estimate. Also, Zhang et a1 found from model 
potential calculations [I91 that the potential barrier at the descending step, W,, exceeds 
the potential barrier on the surface, Wsd. by approximately 0.5 eV. The latter is actually 
valid for step on a (001) surface, but the order of magnitude should be correct in  general 
for semiconductors, Since ds = D J k s ,  we would find A WS = Ws - Wsd if ks were an 
activated quantity with activation energy equal to WS. A natural expectation is that, in the 
higher-temperature range where evaporation takes place, ds should decrease, and that the 
Schwoebel effect should become unimportant for still narrower terraces. 

Note that both limiting cases (11) and (12) with ds << t can be summarized i n  the 
scaling form 

ds exp[,9AWsl (13) 

which results from equation (9) by letting ds + 0. 
It is important to note that equation (12) cannot be found as limiting case of the formulae 

published by Bales and Zangwill [3]. We recall that they implicitly assume from the 
beginning @ = 0, which C O K ~ C ~ ~ Y  describes the growth instabilities but does not give the 
right behaviour at equilibrium or during evaporation. This clearly shows the need for 
explicitly treating the case of non-zero q5. 

4.4. A train of steps: the strong Schwoebel effect 

We give for completeness the result that one obtains from (9) if one assumes the Schwoebel 
effect to be strong. Letting a's -+ CO we see that the term containing cos@ is negligible, 
and one finds 

q 2 f ( q )  r~ D6c&B~q3tanhqt ,  (15) 
Equation (1 1) is recovered in the isolated step limit, as expected. In the case of a train 

(16) 
of steps, we find instead for qE < 1 

4 q 2 f ( q )  = Dsc&Byq e .  
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This result agrees with equation (14) of [2]. Note that a q4-dynamics is typical of 
onedimensional diffusion [22]. In fact, coarse-graining on e, much smaller than ds in this 
case, one gets an arrays of fluctuating strings that do not exchange matter. Along each 
string there is then a coarsegmined density of diffusing adatoms (per unit length) c$. On 
the other hand, dynamic renormalization is expected to produce an effective q2-term (see 
for instance [SI and references therein). 

We turn now to the question of major interest in this paper, that is, step motions during 
sublimation of a vicinal surface. 

5. Step dynamics and step shape during evaporation 

Let us go back to equation (5) and consider again weak (ds + 0) and strong (ds + CO) 

Schwoebel effects, however keeping a non-vanishing evaporation rate c.?&, and thus a 
non-zero diffusion length xg = 1 / K  = m. We find thus the formulae corresponding to 
equations (14) and (15), respectively: 

where we assumed ds (< e; 
q 2 f ( q ,  $) = D J q 2 A ,  tanh (18) 

However, it is now necessary to include into o(q. $) also g(q, $), which does not 

As we did with f, we write g(q, 4)  for weak and strong Schwoebel effects, respectively: 

(19) 

where we assumed e << ds. 

vanish, in general, out of equilibrium. 

g(q.4) = dsAFq*x, tanh (q) 
for ds --t 0, and 

’(” @) [ C O S @  - COSh(Ke) cosh(A,t) (20) 
1 

“cosh ( ~ t )  cosh(A,e) 
+A& sinh(re) sinh(A,e)] 

for ds + 03. Collecting (17) and (19) we find the relaxation rate for weak Schwoebel 
effect: 

o(q,@) X dsAFq2x,tanh (21) 
. .  

-2DJq2A, [ sinh(A,e) l - c o s 4  +tanh(y)] 

From (18) and (21) we find the relaxation rate for the strong Schwoebel effect: 
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5.1. Step-pairing instabiiiv 

If we look at (22) and (23), we realize that the relaxation rate w vanishes at q = 0 for 
in-phase fluctuations, @ = 0, only. This happens because when the fluctuations are not 
in phase, a uniform translation of the whole step train is not a neutral ‘Goldstone mode’. 
The q = 0 contribution, which appears to be positiveaestabilizing-in the presence of 
any non-zero Schwoebel effect, acts on homogeneous fluctuations, and it is therefore the 
term that is responsible for step bunching [16], that is, for the formation of close groups 
of steps separated by wide terraces. We showed in section 3 that the most unstable mode 
corresponds to 4 = n, and it acts so as to pair steps. When the crystal evaporates, and 
adatoms mostly attach to and detach from steps from the lower terrace, a step delimiting a 
narrow lower terrace moves slower than a step bordering a larger one, so the second quickly 
reaches the first, forming a step pair. Since a step pair is slower than a single step, it is 
rapidly reached by a third step, and so on. Repulsive elastic interactions obviously oppose 
the instability. In discussing the formation of bumps of finite wavelength in a step; that is, 
in discussing the stability of the step’s shape at finite q, we may ignore the contribution 
from q = 0 if the characteristic time of the step-pairing instability, l / w ( q  = 0, @ = n), 
turns out to be small compared with the time re, = r/c& needed to evaporate one layer. It 
is straightforward to see how o(0, n) varies as a function of the strength of the Schwoebel 
effect. In fact, 

o ( O , X )  = -2AF 4 
[ds cosh(e!) + x s  sinh(~l)]’ 

When there is no deposition flux, F = 0 and A F  = -41,. Letting now Ke << 1 and 
varying ds in comparison to e ,  we find the two limits 

2 

o(0, n) Nu 2% T ($) 
for ds << e, and 

for ds >> e.  If we take the condition 

as a criterion for an appreciable step hunching during uriv evaporation, this condition is 
seen to be fulfilled only for ds > e: a strong Schwoebel effect or short distance between 
steps. This is seen well in computer simulations by Uwaha and Saito 161 which assume an 
infinite Schwoebel effect during evaporation. 

Note that we have not explicitly included the effects of a DC electric current. However, 
we can discuss its role qualitatively, leaving a quantitative treatment for future work, 
Stoyanov [23] has shown that the current-induced facetting of a vicinal surface can be 
described assuming that the electric current exerts a force on the adatoms. This force acts 
so as to accumulate the adatoms, according to its sign, near the descending or the ascending 
side of each step; if the force is such as to increase the adatom concentration next to 
the descending side, and to lower it next to the ascending one, it increases the emission 
rate of adatoms from the step to the lower terrace. In other words, an increase in k+ and a 
decrease of k- result. The current effectively increases the Schwoebel effect. Step bunching 
occurring through a sequence of step pairings can then be expected. It is easy to realize 
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that an opposite current decreases the Schwoebel effect. Our discussion in terms of the 
Schwoebel barriers includes thus at least qualitatively the effect of the electric current. 

Note, finally, that in the case of silicon ( 1 1 1 )  the conditions K e  << 1 and qe << 1 are 
satisfied. For completeness, we give the form of the relaxation rate in this limit, for any 
value of the Schwoebel length ds and for AF = -c&/r: 

We can go on now to investigate the morphological stability of steps in various physical 
cases. As before, we address fust the isolated step case. This is not very important for 
experiments, but allows comparison with published theoretical results. The case of a step 
train follows. 

5.2. An isolated step: the weak Schwoebel effect 

For an isolated step the notion of phase shift becomes meaningless. We can thus write 
simply o(q) for the relaxation rate. In the weak Schwoebel effect ds << xs in this case. 
From (22) one gets in the e + 00 limit 

2 @(q)  C - D d q  [BrA, t . 
At small q. that is, for K 2 q,  one finds 

4s) -Drc&~ [BY + ds] 4' . 
As shown by Uwaha and Saito 141 and Salditt an . .  Spohn [ 9 ] ,  it is possible to deduce 

from the previous formula the amplitude of step fluctuations, which turns out to be given 
by 

An approximate, but simple derivation of this formula is given in appendix 2. Following 
141, it may be convenient to introduce a quantity vu, defined by 

At equilibrium we have (16x,Iz) = k s T / ( y q 2 ) ,  where y is the step stiffness. We can 
uy/q2.  Since for K > q one has thus define a non-equilibrium effective step stiffness F 

A, % K ,  we deduce from (29). (30) and (31) 

% = [BY + dsl q2 (32) 

and the effective step stiffness is i; = y + kBT&. Typically By is of order 1 in atomic 
units. Since we are only supposing here ds < x S ,  i. may be much larger than y .  This has 
been called 'dynamic step stiffening'. 
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5.3. An isolated step: the strong Schwoebel effect 

This case has been considered by Uwaha and Saito [4]. From (23), taking ds >> x. and 
again K q,  one finds 

or, according to (29) and (30), 

This is Uwaha and Saito's result [4]. Note that ds and x, exchanged their roles compared 
to those in (32). Since x, may be very large even at high T, the step stiffness is renormalized 
to an effective large value p i .  % xJ2. 

We go on now to consider the more interesting case of a train of steps that are at mutual 
distance e. 

5.4. A train of steps: the weak Schnoebel effect 

I t  is now more convenient to start from equation (28). We assume first that the Schwoebel 
effect is small, that is, ds < e, as we expect it to be on Si(ll1) around 1000 "C. In this 
limit (28) becomes 

221: 1 
O(q, @) @((I,@) - DsC& 2(1 - COS@)@)' + -I COS@)A;e* 4- 3dsK e - . (35) [ 3 

This result is, to our knowledge, new. 
We can estimate the quantities in brackets for Si(ll1) at 1273 K, and typical terrace 

sizes e % lo' au. In [2] we found an activation energy for the mass hansport coefficient 
c&Ds of 1.1 eV on Si(ll1). For the activation energy of the mass evaporation rate, c&/z ,  
the value of 4.3 eV is well established [12, lo]. The diffusion length xs = is then as 
usual taken as a simple activated quantity, with an activation energy of approximately 1.6 
eV. At 1000 "C we thus find 1 / ~  = x, X lo6 in units of the atomic spacing. According 
to our previous estimate we also have ds % 10' at this temperature. Also, in a typical 
reflection electron microscopy experiment, fluctuations of wavelengths of the order of lo4 
are observed 1111. Hence, we find that only the first term in the bracket of equation (35) 
survives. Since the constant o(0, @) is also negligible, we find 

(36) 

as we found at equilibrium (compare equation (12)). It can be shown (see appendix 2) 
that step fluctuations are also of the same order of magnitude as (equilibrium) thermal 
fluctuations. 

w ( q , @ )  % - D 4 2 ( 1  - cos@)fiy- q2 
e 

5.5. A train of steps: the strong Schwoebel effect 

Let us consider now equation (28) for the strong Schwoebel effect, ds << e. We readily find 

(37) 

Uwaha and Saito addressed the same problem (see ( 5 )  and (6) of [5]), but presumably 
they only considered in-phase fluctuation, as Bales and Zangwill did. In fact, we can recover 

* 21 1 
w(q,  4) = o(0, @) - C&D. @ y t ~ ;  + -(2 - COS@)K e Q ~ ,  [ 2 
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their result only if we let q5 = 0. We stress that the choice cos q5 = 1 gives the correct answer 
on the stability of the step morphology only during deposition (more exactly, for AF > 0). 
If adatom desorption is prevailing (i.e. if AF < 0), the most unstable fluctuational mode 
is found for q5 = n. In this case, and for a shong Schwoebel effect, the q = 0 term is 
as large as the evaporation rate, and a step pairing instability occurs as soon as step flow 
starts. This is quite clearly seen in Uwaha and Saito's simulations (see figure 2.a of [5]) .  
On the other hand, as we discussed at end of subsection 4.1, if the effect of a DC current 
is neglected (or if AC current heating is assumed), step-pairing does not occur on Si( 11 1) 
if the miscut is small enough, or, equivalently, if the average stepstep distance is large 
enough. We take this as evidence of a weak Schwoebel effect; that is, we conclude that 
ds << e. The step-bunching instability that takes place between 1050 and 1250 "C when 
a DC electric current in the step-up direction is used to heat the sample [ 10, 231 may be 
physically justified in terms of the Schwoebel effect. The applied external potential would 
act so as effectively to increase the potential barrier for adatoms (if adatoms are positively 
charged, as Stoyanov assumes) at down-steps, finally leading to a increase of the Schwoebel 
effect for increasing T (increasing current). 

Figure 3. A sketch of the relaxation rate o(q) for an 
isolated step. Note that the same qualitative form would 
be obtained for in-phase (4 = 0)  fluctuations of a train 
of steps. 

Figure 4. A sketch of fhe relaxation rate w ( q . x )  for 
anti-phase (.# = H) fluctuations of a Vain of steps. 

6. On the shape of steps during evaporation 

The main conclusion of this work is that a strong Schwoebel effect has consequences for 
step dynamics that are qualitatively quite different in the two cases of an isolated step and 
of a train of steps. In the former case, evaporation always has a smoothing action. The 
relaxation rate o(q), qualitatively sketched in figure 3, is negative (and stabilizing) for any 
q .  A strong Schwoebel effect increases the smoothing action, and an evaporating isolated 
step is stiffer for stronger asymmetry of the adatom kinetics at steps. 

In the case of a train of steps, which is realized on any vicinal surface, any non-vanishiug 
Schwoebel effect makes the anti-phase ($ = K) fluctuation relaxation rate, o(q, n),  positive 
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at small q,  with a finite value at q = 0 (see figure 4). This implies (i) that a step-pairing 
instability occurs, and (ii) that in a finite range, long-wavelength anti-phase fluctuations are 
also unstable. The destabilizing action is stronger for a stronger Schwoebel effect. 

Therefore, we conclude that evaporation does not seem to introduce any special 
smoothing effect on the shape of steps. However, we are able to provide an argument 
for showing that a smooth step should remain smooth if it evaporates in the presence of a 
weak Schwoebel effect. Our argument states that, whereas at equilibrium the only relevant 
rate is adatom surface diffusion-and so equilibrium step fluctuations depend mainly on the 
mass diffusion constant D,c$-during sublimation another hesca le  becomes important: 
the reciprocal of the desorption rate l/r of adatoms from the surface. If the time needed 
to sublimate one layer, r/c& is smaller than the time needed to build a meander of 
given size and wavelength, then this meander will not appear. This mechanism should 
prevent long-wavelength and large-amplitude fluctuations from appearing, and would thus 
justify the persistence of straight steps during step flow evaporation, if they were originally 
straight. To be quantitative, let us take formula (35). which we found to be appropriate 
to the experimental situation under examination, and evaluate the time needed to create a 
fluctuation of wavelength L, for a typical phase shift, cos$ = 0. Then, let us compare it 
to rev = ./e&: 

Equation (38) implies that only fluctuations of wavelengths smaller than L,, where 
X, L, e - m (39) 

will appear in a typical REM experiment. In turn, this implies that only amplitudes of the 
order of or smaller than h,, where (see appendix 2) 

will be seen. Using the experimental values 12, 12) l e  IO4, By a I ,  x, e lo5 at 1305 OC, 
we can estimate the order of magnitude of the largest fluctuation amplitude that one should 
see: 

h, 10'. (41) 
The resolution of mhf allows one to see fluctuations of amplitude larger than 

e 50 .& 1241. The 'critical' amplitude h,  lies near the limit of the instrumental resolution 
(note that several numerical factors have been omitted in the estimation of hJ. Summarizing 
ow argument, larger amplitudes than h, are kinetically hindered (the corresponding 
fluctuations have no time to appear), and smaller amplitudes lie below the insmmental 
resolution. The steps thus look to be smooth. 

7. Conclusions 

We have computed the relaxation rate of small sinusoidal perturbations in the shape of steps 
on a sublimating vicinal surface. A finite asymmetry in the kinetics coefficients of adatom 
attachment and detachment at step sticking sites (the Schwoebel effect) has been included. 
The latter has been recently held to be responsible of the observed phenomenon of kinetic 
step smoothing during the sublimation of the crystal face. We have discussed the plausible 
values of this asymmetry at high temperature, where sublimation takes place, with special 
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reference to Si( 11 1) where obervations have been made. We have concluded that, at least in 
this case, the Schwoebel effect may not be sufficiently strong to explain step smoothing. This 
conclusion especially follows from observations of step fluctuations at lower temperature, 
which are not compatible with a strong Schwoebel effect. We propose that step smoothing is 
due to the finite time needed to create a fluctuation of given wavelength along a step: if this 
time is longer than the time needed to sublimate one surface layer, that type of fluctuation 
cannot take place. This mechanism is operative independently of any asymmetry of step 
kinetics coefficients, is the stronger for higher evaporation rates and larger terrace sizes. 
Our argument is very naive and only explains why straight steps remain straight, but it has 
the advantage of not invoking an enormously strong Schwoebel effect, of which there is no 
evidence, at least for steps on a silicon (1 1 1) face. 
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Appendix A. 

In this appendix we give the derivation of the relaxation rate in the case of a train of steps 
with arbitrary phase shift 6. We shall denote by Sx, the step excursion about the straight 
step position labelled by the integer m. The adatom density C ( T )  is replaced by U ,  where 
u(r) = c(r )  - F r .  Equation (1) becomes 

vu-,=o. Z U  

xs 
On both sides of the step we have the boundary conditions 

(Al.l) 

(A1.2) 

(A1.3) 

where the '+' and '-' signs refer to the lower and upper terraces respectively, au fan stands 
for the normal derivative, with the normal pointing in the positive x direction, k+ and k- 
are the sticking coefficients from the lower and the upper terraces respectively, and K, is 
the step curvature, defined as positive for a convex profile. 

Once the concentration gradients on both sides of the step are known we can evaluate 
the step velocity by means of mass conservation law at the step 

(A1.4) 

The set (Al.lt(A1.4) completely describes the step dynamics. 
This set admits a straight-step solution moving at a constant speed V along the x-  

direction. The zeroth-order solution is a train of equidistant steps separated by the distance 
e .  The general solution for the density is given by 

U g  = A COSh(KX) t B sinh(Kx). (A1.5) 
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The two constants of integration A and B are easily obtained by making use of the two 
boundary conditions (A1.2) (A1.3). The result is 

Making use of (A1.4), we obtain the step velocity 
2[COSh(Kl) - 11 + (d+ + d-)K sinh(Kt) 

V = x,AF (A1.7) 

The linear stability of the solution is analysed by looking for perturbations of the step 

(A1.8) 

where A, stands for a complex amplitude of the mth step, w is the amplification (or 
damping) rate that we whish to determine, and q is the perturbation wavenumber. The 
adatom density variation in response to step perturbations is written as 

11 + d + d - ~ ~ ] s i n h ( ~ t )  + (d+ + d-)K cosh(~l )  ' 

profile in the form 
6x, = A,eiqY+w' + cc 

U,,,, = [CY,,, sinh(A,x) + &, c o ~ h ( A , x ) ] e ' ~ ~ ~ ~ '  + Cc (A1.9) 

where A9 = w. The adatom density in equation (A1.9) above is the one on the 
lower terrace, just ahead of the step. In order to compute the constants U,,, and p,,, we have 
to use (A1.2) and (A1.3). Care should be taken when using these boundary conditions. 
Equation (A1.2) should be written at x = 6x,. Since ug (the straight-step solution) is of 
order zero in the perturbation, we must take into account terms like 6 x ,  au~/ax(x  = 0). 
On the other hand the constant CY,,, and B,,, must be evaluated within the terrace under 
consideration (ax, < x < t + Sx,+l). This means that the second condition (A1.3) is to 
be used at x = + 6xm+1 (here also we have a contribution from ug, as mentioned above). 
If one takes care of these points the calculation is straightforward and yields the following 
expressions: 

U, = -('D9xs)-' (BqA,+, +k;'&A,[D,A2, sinh(A,l) + k- cosh(A,l)]) 

B m  = k;l[D&xAq + K&&I (Al. 10) 

where &, B, and 'D, are given by 

4 = k+rx,qz - D$TAFW, + Kd-  COSh(Kl) 

I 1 

K d +  
+-[COSh(Kt) - 11 + K d +  

- [ 1 + 3 sinh(Kt)) 

(Al.11) I 'Dq = D.( A, (1 + 2)  cosh(A,t) + sinh(A,l)[d_ + l/d+Ai] 

where we also used 

W, = {[Kd+d- + x,] sinh(K8) + (d+ + d-) cosh(~t)]-'. (A 1.12) 
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Note that both amplitudes A, and A,+] enter in the determination of U,. In order to 
find the relaxation rate, we make use of (A1.4). For that purpose we need to evaluate the 
normal derivative of U at x = Sx, - O+. This can be done by finding the adatom density 
U,-] in the domain [Sx,-l - t c x c Sx,]. It is easy to see that u,-1 is given by an 
expression analogous to that for U, where in a, and pm we substitute for the amplitudes 
of the deformations A, and A,+I with A,-, and A,, respectively. Having determined 
the expression for the density on both sides of the step considered, we are in a position to 
use equation (A1.4). The calculation involves tedious algebra, and the result can be finally 
written in the following form: 

+AF((d- - d+){Aq(d+ + d-)[x,A, sinh(A,t) sinh(Kl) 
- cosh(A,t) COSh(Kt)] + sinh(A,l)[cosh(Kt) - 1l~:q~)Am 
+Aq[d?Am+l - d+A,-,] 2 cosh(Ki) - A,[x,(d+ + d-) sinh(Kl) 

+(d+d- +X:)COSh(KL) - x:I(A~-I - Am+i)j/D(q). (A1.13) 

where D(q) is given, as in the body of the paper, by 

D(q)  = [A,(d++d-)cosh(A,t)+ (1 +d+d-A:)sinh(A,t)] (A1.14) 
x[(d+ + d-) cosh(K!) + (Kd+d- + x s )  sinh (~e ) ] .  

Equation (A1.13) is what we are looking for. It relates the dynamics of a step to its 
neighbours, when each step is moving in an asynchronized way with respect to the others. 
The geileral solution equation (A1.13) is given by A, = Ce”4 (for periodic boundary 
conditions) where q5 is an arbitrary real number measuring the phase shift between two 
consecutive steps, and C is a real constant. Inserting this expression into equation (A1.13) 
we obtain the relaxation rate as a function of the phase q i  Writting w = w, + iwi, we have 

+AF(d- - d+){A,(d+ + d-)[xsA, sinh(A,l) sinh(Kt) 
- cosh(A,t) Cosh(Ke) + COS(d)] 4- Sinh(A,~)[cosh(K~) - I]xfq2)/D(q) 

+d! + d: - 2x:)/D(q). 
w, = A,AF sin(@){Zxs(d+ +d-)sinh(Kt) + 2(d+d- + x ~ ) c o s h ( ~ t )  

(A1.15) 

It can be checked that for collective fluctuations (e = 0) we recover the result of Bales 
and Zangwill. Letting A,-I = A,+I = 0 we find the relaxation rate of a step fluctuating 
between two straight neighbours, which corresponds to cos4 = 0. Note that here we have 
an imaginary part (which vanishes for 4 = 0 or 4 = x only). This means that propagative 
effects enter in the way by which perturbations are transported from one step to another. 

Appendix B. 

The amplitude of step fluctuations has been calculated in various cases by Uwaha and Saito 
[4] and by Salditt and Spohn [9]. It may be convenient for the reader to have all cases 
gathered together in the following simplified evaluation. The principle is the same as in [Z]. 

Instead of the fluctuation amplitude, equation (31). we shall evaluate the average width 
h ( L )  of a ‘bump’ of length L FZ l / q  along a step (figure Al). An elementary calculation 

- 
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Figure Al.  A schematic description of a step fluctuation (‘bump’) of len@ L and width h, in a 
main of steps with average separation e. Adrom D is diffusing fmm a step to the neighbouring 
one, where it will stick if the Schwwbel effect is weak enough (ds <c e.  smal l  asymmetry 01 
large ten’ace). 

or dimensional analysis show that h ( L )  is related to (31) through 

(B1.l) 

In order to evaluate hz(L) ,  we shall compute the mean square width at time t ,  h2(L,  t ) ,  
neglecting the restoring force. The latter is approximately h / w ( l / l ) ,  where w ( q )  is the 
quantity computed throughout this article in various cases. Then, the steady-state value 
hz(L)  can be evaluated by requiring the time t to be of the order of the relaxation time 
l/w(l/L), so that 

1 
h 2 ( L )  = ~ ( I S X I I L l Z ) ~  

h z ( L )  =h’(L,l/w(l/L)). (B 1.2) 

In order to evaluate h2(L. t ) .  we write that the fluctuation of the area of the bump, 
LZh2(L) ,  is equal to the fluctuation of the total number N ( t )  of atoms sticking to the bump 
during time 1. If the various sticking events may be considered as independent, one has 
from elementary probability theory that the fluctuation is of the order of the square root of 
N ,  or, equivalently, 

LZhZ(L) = N ( t )  . (B1.3) 

The adatoms sticking to a portion of step of length L are those contained in a surface 
area of size L x L,. The length L, is, in general, a function of L,  i! and K ,  as we shall see 
later. The number of these adatoms is equal to $LL,, and they spend, on average, inside 
that area a time ?* FsI D,/inf(LZ, Lz). Sticking events whose time separation is larger then 
t* can be considered as independent. On the other hand, the number of atoms that stick to 
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the step segment during a time T* is of order c&LL,, the total number of atoms inside the 
area L x L,. Finally, N ( t )  should be proportional to t for t >> r*. Therefore, 

(B1.4) 

AI1 these formulae are derived in [2] in more detail. There, we used them to compute 
in a simple way w(q) at equilibrium. Here, since we know w(q)  from the (less simple) 
calculations of appendix 1, we use this knowledge to evaluate the fluctuation (Bl.1). 

(i) An evaporating isolated step *,hen q << K.  This is the case treated in subsections 4.2 
and 4.3. The values of the parameters in (B1.4) are L, % 1 / ~  and l/?* % 4~'. Inserting 
them into (B1.4) yields 

N ( t )  % C&D,KLt. (B1.5) 

t 
N ( t )  % c&LLs- .  

T* 

Letting t i= I / w ( l / L )  and inserting into (B1.3) yields 

Using w(q) given in equation (29). one obtains for a weak Schwoebel effect 

(B1.6) 

(B1.7) 

Equation (32) is then obtained from equations (B1.l) and (31). 
If the Schwoebel effect is strong, then equation (34) is obtained from (B1.6) through 

ySl.l), (31) and (33). 

(ii) An evaporating vicinal surface with a weak Schwoebel effect. This is the situation 
considered in subsection 4.4. As discussed in [2], the values of the parameters in (B1.4) 
are Ls = and I/?* % D,/e2. Inserting them into (B1.4) yields N ( t )  % D,c&Lt/e. Then 
equation (B1.3) gives 

(B1.8) 

When using w ( q , @ )  in equation (36), cos6 can be replaced by its average value 0. 
Therefore one obtains 

which is the equilibrium value. 

(ii) An evaporating vicinal surface with a strong Schwoebel effect. This is the situation 
considered in subsection 4.5. As discussed in 121, the values of the parameters in (B1.4) 
are L5 = e  and l / ~ *  FY DJL'. Inserting them into (B1.4) yields N ( t )  % D,c&er/L. Then 
equation (B1.3) gives 

(B1.lO) 

When using w(q, $) given in equation (37), cos$ can be replaced by its average value 
0. We get, to order of magnitude, 

(B1.ll) 
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Inserting experimental values appropriate to silicon (111) at 1300 "C (K FX IO+, 
e FX lo4, B y  FX 1) and considering long (L x le) and short (L m IOz) wavelengths, 
we find, respectively. 

L 
h*(L) = (B1.12) 

which is the equilibrium fluctuation amplitude for short wavelengths, and 

(B 1.13) 
e 

h2Q) 

for long wavelengths, where the w(0)-term dominates and step bunching is expected. 
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